B004-林西西-基于数据挖掘技术的市财政收入分析预测模型

发布时间:2015-11-23 17:27:18来源:本站原创

 摘要:本文针对广州市财政收入及影响财政收入关键因素的问题,以题目提供的各类税收收入及宏观经济和非经济指标数据为基础,利用典型相关分析、熵权系数法、灰色预测、主成分多元回归、BP神经网络预测等方法,对众多复杂的数据进行多元统计分析和预测,得到对广州市财政评价的更为深层次的探究结果。 

针对问题一,通过分析原数据,可以得出了历年地区财政收入为公共财政收入与基金预算收入之和的结论,并且历年的政府性基金收益率固定,每年收入也固定,所以我们把研究影响地方财政关键因素的问题转化为研究影响公共财政收入关键宏观因素问题。

我们通过典型相关分析,即利用宏观因素和对应关联的税种收入的相关关系来衡量两组指标的关联度,得出城市居民年人均可支配收入、第二产业增加值、城市商品零售价格指数、建筑企业利润总额、第三产业增加值、住宿和餐饮业零售额、全社会房地产开发投资额、地区生产总值、批发零售业增加值以及工业增加值是影响公共财政收入的关键因素的结论,而这些因素也是影响地方财政的关键因素。另一方面,利用熵权系数模型求得与公共财政收入关联宏观因素的权重,并确定关联度较大的指标。通过比较两个模型的结论基本一致。

 针对问题二,我们把财政总收入分成公共财政收入类以及基金预算收入类两类。首先,对于公共财政收入类的预测,一方面,根据影响公共财政收入的关键宏观因素,采用灰色预测模型对原始数据做累加生成得到规律性较强的近似指数序列,再对各个宏观因素作预测;另一方面,根据题目给出的历年数据,我们利用主成分回归法建立公共财政收入关于主成分的回归方程,进而预算出公共财政收入。其次,对于基金预算收入类的预测,我们采用多项式拟合的方法对历年基金预算收入拟合,并作相应预测。最后,加总公共财政收入与基金预算收入预测值得到财政总收入,我们得出2014年和2015年地方财政总收入分别为2453.9亿元和2843.6亿元。为了优化模型和克服灰色预测主成分回归模型在处理反馈信息时的缺陷,采用BP神经网络构建地方公共财政收入预测模型,以充分挖掘公共财政收入、支出与宏观经济活动的反馈关系,最后得出2014年和2015年公共财政收入的预测值分别为1369亿元和1496.6亿元。 

针对问题三,我们通过对比历年财政支出情况,给出了2015年广州市财政预算草案一些分析和建议,并提出有效支配财政收入的策略。  

 

关键词:典型相关分析;灰色预测;BP神经网络;主成分回归分析

 

阅读全文

公众号
返回
顶部
请关注“官方公众号”
Copyright © 2013-2017   广州泰迪智能科技有限公司   技术支持   粤ICP备14098620号